
Dynamic Skeletonization via Variational Medial Axis Sampling
QIJIA HUANG, Université de Strasbourg, France and ICube, CNRS, France
PIERRE KRAEMER, Université de Strasbourg, France and ICube, CNRS, France
SYLVAIN THERY, Université de Strasbourg, France and ICube, CNRS, France
DOMINIQUE BECHMANN, Université de Strasbourg, France and ICube, CNRS, France

Fig. 1. Gallery of skeletons obtained with our method.

We present a novel method for computing a discrete skeleton from a shape
represented by a point cloud or triangle mesh. Inspired by variational shape
approximation, our approach optimizes the partitioning of the input shape
by minimizing an error metric defined between medial axis samples (medial
spheres) and their corresponding clusters. The metric combines plane-sphere
and point-sphere distance terms and the balance between these two terms
enables coarse skeletons to capture the main geometric features while denser
skeletons achieve a uniform distribution of medial axis samples. The sam-
pling of the medial axis is progressively refined through an automatic process
that splits medial spheres with the highest errors. Our method’s efficiency
also allows users to dynamically add or remove medial axis samples locally
while the optimization process continuously updates the underlying parti-
tion. Skeleton connectivity is efficiently constructed by computing the dual
of the optimized shape partition. Unlike previous approaches, our method
does not rely on a predefined set of candidate spheres or an initial medial
axis representation.
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1 Introduction
The medial axis of a bounded shape is defined as the set of points
that have at least two nearest points on the boundary of the shape,
i.e. the centers of all maximally inscribed balls. Along with their
associated radius, these points form an alternative representation
of the original shape, the medial axis transform (MAT). Application
domains of this representation include segmentation [Lin et al. 2022],
deformation [Lan et al. 2020], animation [Yang et al. 2018] and
hexahedral volume mesh generation [Quadros 2014; Viville et al.
2023]. In 3D, the medial axis of a surface is composed of both curve
and surface structures.
Due to its complexity and sensitivity to the input shape noise,

discrete approximations of the medial axis, sometimes referred to as
skeletons, are commonly used [Tagliasacchi et al. 2016]. Depending
on the application, some skeletons consist solely of curves, capturing
essentially tubular shapes, while others can also include surface
parts. The quality of a skeleton is generally evaluated through a
classical trade-off between accuracy and compactness. Accuracy is
typically measured by the two-sided Hausdorff distance between the
original shape and the surface implicitly defined by interpolating
medial spheres over the connectivity of the skeleton [Sun et al.
2015]. Compactness is simply determined by the number of medial
samples.
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One of the most prominent family of existing methods for shape
skeletonization adopts a progressive simplification approach, start-
ing with a fine approximation and gradually coarsening or sub-
sampling it while minimizing error relative to the original data.
Although these methods can produce accurate results, they often
lack control over the compactness and distribution of the resulting
samples. Additionally, the inherent operations and computation
times of these methods often make it difficult for the user to inter-
vene in the control of the result.

Inspired by successful variational approaches in geometric tasks
such as shape approximation [Cohen-Steiner et al. 2004], segmenta-
tion [Lu et al. 2007] and surface reconstruction [Zhao et al. 2023],
we present a novel coarse-to-fine method for the computation of
a discrete skeleton of a shape represented by a point cloud or a
triangle mesh. We observed that under conditions of extreme sim-
plification, each sample of a discrete representation of a medial axis
captures a distinct segment of the object’s local geometry. Motivated
by this insight, our objective is to determine the optimal parameters
of a given number of medial spheres so that they best represent
these geometric segments. To achieve this, we develop a metric that
combines a plane-sphere and a point-sphere distance terms. This
metric is employed in an optimization loop to partition the input
shape based on a set of medial spheres and as an objective func-
tion for updating these spheres within their cluster. Starting from
a single sample, an automatic progressive refinement process adds
samples according to the highest errors until a given threshold is
met or a maximal spheres count is reached. The inherent efficiency
allows users to interactively add or remove samples according to the
user needs while the optimization process continuously updates the
underlying partition. To establish the connectivity of the skeleton,
we propose using the dual of the shape partition, a method fast
enough to be computed on the fly. Ultimately, our method outper-
forms state-of-the-art methods by achieving lower reconstruction
errors and offering greater control over the distribution of medial
spheres, all while being fast and robust to noise.
The contributions of this paper are the following:

• a variational framework for the sampling of the medial axis
of a 3D shape that does not rely on an initial representation
of the medial axis or a predefined set of candidate points.
Instead, our method progressively discovers the medial axis,
effectively updating the positions and radii of medial spheres
based on their dynamic relationship with the input shape’s
clusters.

• a fast and versatile connectivity building algorithm. Com-
bined with our highly parallelizable optimization process, our
method is fast enough to enable interactive tuning of the
skeleton. This capability provides enhanced flexibility and
usability for a wide range of geometric modeling tasks.

2 Related work
Medial Axis approximation. The most popular methods for ap-

proximating the medial axis start with the construction of a Voronoi
diagram of sample points on the surface of the shape and keeping
interior points and their connectivity. The resulting structure is of-
ten too noisy and impractical for real-world applications due either

to the inherent noise in the input data or to the well-known problem
of spikes generated from sliver tetrahedra [Amenta and Bern 1998]
in the Delaunay triangulation of the input points. Consequently, a
significant number of methods focus on simplifying the structure of
the medial axis by identifying stable and meaningful parts within
this medial mesh.
Criteria-based filtering methods eliminate the Voronoi vertices

that do not meet a given criteria. Examples include the 𝜆-medial
axis [Chazal and Lieutier 2005] that filters samples based on their
radius, or the angle-based filtering [Amenta et al. 2001; Dey and
Zhao 2002; Foskey et al. 2003; Sud et al. 2005] that filters out points
of themedial axis based on the angle formed by its two closest points.
While simple and efficient, these approaches suffer either to preserve
the topology of the original shape or its features at different scales.
The Scale Axis Transform [Giesen et al. 2009; Miklos et al. 2010]
applies a multiplicative scaling to the initial medial balls, removes
those that are absorbed, and then scales back the surviving ones. A
notable drawback of this method is that it can lead to changes in
topology during the shrinking process.

Inspired by mesh simplification techniques like the QEM decima-
tion method [Garland and Heckbert 1997], many approaches [Faraj
et al. 2013; Li et al. 2015; Pan et al. 2019; Sun et al. 2015] have at-
tempted to progressively simplify the medial axis approximation by
performing edge collapse operation. Among these, Q-MAT [Li et al.
2015] defines a quadratic error metric that guides the simplification
process, achieving highly accurate shape approximations. However,
its reliance solely on local information results in a lack of control
over the spheres distribution.
More recently, the Coverage Axis method [Dou et al. 2022] pro-

poses to extract the medial axis by identifying, among a set of initial
candidates, the minimum number of dilated medial spheres required
to cover the entire set of the input surface points. However, since
the set cover problem they address is NP-hard, it induces a very
high computational cost. To keep the computation within tractable
limits, the shape is sparsely sampled, thus limiting the complexity
of addressable shapes. A recent update of this method [Wang et al.
2024a] mitigates this complexity, but at the expense of less control
over the distribution of the selected medial spheres. Importantly,
both approaches heavily rely on the quality of the initial candidate
set. Inadequate candidates can lead to suboptimal results.
MATFP [Wang et al. 2022] specializes in the processing of CAD

models ensuring the preservation of both internal medial axis and
external mesh surface features that are pre-computated in order to
constrain some samples to lie on the sharp features of the shape. A
dense set of internal samples are generated from a classical Voronoi
based approach and corrected as valid medial spheres using an
optimization based on the geometry of their surface contact points.
Careful handling of different configurations allow to maintain the
features of the medial mesh and the connectivity is deduced as
the dual of the restricted power diagram. Topology preservation is
not guaranteed but is addressed in a following work [Wang et al.
2024b] using a volumetric representation of the shape. This method
produces accurate medial axes but is not tailored to generate coarse
approximations or provide dynamic control over the result.
Recent advances in deep learning has encouraged the investi-

gation of learning-based method for skeleton extraction [Clémot
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Fig. 2. Overview of the method: Starting from a given shape, a first cluster containing all vertices is defined and a first sphere is optimized using our
update metric. After the insertion of new spheres, clusters are computed and spheres are updated in an optimization loop. The process stops when the total
error meets a given threshold or a pre-defined number of samples is reached. Finally, the connectivity of the medial axis approximation is deduced from the
adjacency of the clusters.

and Digne 2023; Ge et al. 2023; Lin et al. 2021; Yang et al. 2020]. In
particular, Point2Skeleton [Lin et al. 2021] learns the skeletal repre-
sentations by predicting and connecting skeletal points to form a
mesh in an unsupervised manner. Point2MM [Ge et al. 2023] learns
directly a medial mesh from point clouds. However, neither method
offers interactive control over the resulting skeleton, nor do they
effectively preserve the geometric features of the original shape.
Neural Skeleton [Clémot and Digne 2023] trains an implicit neural
representation and extracts the skeleton by combining adaptive
medial point sampling with the Coverage Axis to construct connec-
tivity, thereby sharing the same drawbacks as Coverage Axis.

Variational approaches. Variational approaches have been suc-
cessfully applied to a variety of tasks in geometry processing, in-
cluding surface approximation [Cohen-Steiner et al. 2004; Wu and
Kobbelt 2005], segmentation [Yan et al. 2012], and remeshing [Yan
et al. 2009]. These methods have also been extended to adapt point
clouds [Skrodzki et al. 2020] for surface approximation and, more re-
cently, for surface reconstruction [Zhao et al. 2023]. Typically, these
approaches address their specific challenges by progressively opti-
mizing a partition of the input shape. This is achieved by minimizing
an error metric formulated between the clusters of the partition and
various geometric proxies, such as planes, spheres, or cylinders.

To our knowledge, such an approach has not yet been used for
the task of medial axis approximation. The appealing characteristics

are notably the progressive construction that allow to obtain results
at different scales and the control of the result via the parameters
of the optimized metric.

3 Method
The input of our method is a 3D shape represented either as a point
cloud with normals or as a surface triangle mesh. As an output, it
produces a skeleton, an approximation of its medial axis, represented
as a non-manifold mesh with surface and curve parts. In the case of
a point cloud, neighborhood information is required and we build a
k-nearest neighbors (KNN) graph of the point cloud, using 𝑘 = 6 as
a typical value.
Our method relies on the minimization of distances between

spheres, points and planes defined at the vertices of the input shape
(Sec. 3.1). The optimization of the medial spheres is performed
by interleaving the partitioning (Sec. 3.2) of the input vertices –
associating each medial sphere with its corresponding cluster – and
the update of the medial spheres to minimize the error between each
sphere and the local geometry of its cluster (Sec. 3.3). Medial spheres
that exhibit substantial error are split to progressively improve the
global accuracy of the skeleton (Sec. 3.4). This iterative process
continues until the total error meets a given threshold or a maximum
spheres count is reached. Finally, the connectivity of the skeleton is
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established by computing the dual of the shape partition (Sec. 3.5).
An overview of the method is illustrated in Figure 2.

Notations. We denote 𝑠 = (𝑞, 𝑟 ) ∈ R4 the sphere of center 𝑞 ∈ R3
and radius 𝑟 ∈ R. {𝑝, 𝑛}⊥ denotes the plane orthogonal to the unit
vector𝑛 ∈ R3 and passing through the point 𝑝 ∈ R3. In the following
expressions, vectors are considered as column vectors.

3.1 Distances definition
The distance between a sphere 𝑠 = (𝑞, 𝑟 ) and a point 𝑝 is given by

𝑑𝑝 (𝑠) = (∥𝑝 − 𝑞∥) − 𝑟 (1)

The distance between a sphere 𝑠 = (𝑞, 𝑟 ) and a plane {𝑝, 𝑛}⊥ (see
inset) is given by

𝑑𝑝,𝑛 (𝑠) = 𝑛𝑡 · (𝑝 − 𝑞) − 𝑟 (2)

As introduced by [Thiery et al. 2013], the
square of this distance can be expressed as a
quadric w.r.t. a given sphere 𝑠 – namely, the spher-
ical quadric error metric (SQEM) – that naturally
compose and is defined as

𝑄𝑝,𝑛 (𝑠) =
1
2
𝑠𝑡 · 𝐴 · 𝑠 − 𝑏𝑡 · 𝑠 + 𝑐 (3)

where the matrix 𝐴, vector 𝑏, and scalar 𝑐 are given by

𝐴 = 2

𝑛 · 𝑛𝑡 𝑛

𝑛𝑡 1

 , 𝑏 = 2
(
𝑛𝑡 · 𝑝

) 
𝑛

1

 , 𝑐 = (𝑛𝑡 · 𝑝)2

Depending on the nature of the input shape description, the func-
tions 𝐷𝑣𝑖 (𝑠), that measures the weighted squared distance between
a sphere 𝑠 and the vertex 𝑣𝑖 , and𝑄𝑣𝑖 (𝑠), that measures the weighted
squared distance between a sphere 𝑠 and a set of planes associated
to the vertex 𝑣𝑖 , are defined in the following way.

Point Cloud Input. Given a point cloud P, we denote 𝑣𝑖 ∈ R3 a
vertex of P, 𝑛𝑖 ∈ R3 its given or estimated normal and A(𝑣𝑖 ) ∈ R
its support area computed as proposed in [Zhao et al. 2023]. The
function 𝐷𝑣𝑖 is defined as

𝐷𝑣𝑖 (𝑠) = A(𝑣𝑖 ) 𝑑𝑣𝑖 (𝑠)2 (4)

The diffused quadric 𝑄𝑣𝑖 is defined as

𝑄𝑣𝑖 (𝑠) =
∑︁

𝑣𝑗 ∈𝐾𝑁𝑁 (𝑣𝑖 )

A(𝑣 𝑗 )
𝑘

𝑄𝑣𝑗 ,𝑛 𝑗
(5)

where 𝐾𝑁𝑁 (𝑣𝑖 ) is the set of 𝑘 nearest neighbors of 𝑣𝑖 in P.

Mesh Input. Given a triangle surface mesh, we denote 𝑣𝑖 ∈ R3
a vertex of the mesh, 𝑡𝑖 a triangle of the mesh, 𝑛𝑖 the normal of
triangle 𝑡𝑖 and A(𝑡𝑖 ) the area of triangle 𝑡𝑖 . The function 𝐷𝑣𝑖 is
defined as

𝐷𝑣𝑖 (𝑠) =
©­«

∑︁
𝑡 𝑗 ∈𝑇 (𝑣𝑖 )

A(𝑡 𝑗 )
3

ª®¬𝑑𝑣𝑖 (𝑠)2 (6)

where 𝑇 (𝑣𝑖 ) is the set of triangles incident to 𝑣𝑖 in the mesh. The
diffused quadric 𝑄𝑣𝑖 is defined as

𝑄𝑣𝑖 (𝑠) =
∑︁

𝑡 𝑗 ∈𝑇 (𝑣𝑖 )

A(𝑡 𝑗 )
3

𝑄𝑣𝑖 ,𝑛 𝑗
(7)

3.2 Shape partitioning
Our method starts with a single medial sphere, derived by consid-
ering the entire set of vertices as one cluster and optimizing our
metric (Sec 3.3). As new medial spheres are subsequently added, it
becomes necessary to compute a new partition of the input vertices.
To achieve this, each vertex 𝑣𝑖 of the shape is iteratively processed
and assigned to the cluster of the medial sphere𝑚 𝑗 = (𝑞 𝑗 , 𝑟 𝑗 ) that
minimizes a cost. The cost associated with adding vertex 𝑣𝑖 to the
cluster of sphere𝑚 𝑗 is defined as:

𝐸𝑣𝑖 (𝑚 𝑗 ) = 𝑄𝑣𝑖 (𝑚 𝑗 ) + 𝜆𝐷𝑣𝑖 (𝑚 𝑗 ) (8)

This cost function combines a SQEM term 𝑄𝑣𝑖 and a Euclidean
distance term 𝐷𝑣𝑖 weighted by a coefficient 𝜆. Using only the SQEM
term, which measures plane-sphere distances, would result in large
anisotropic clusters with several components and noisy borders,
as this distance remains low in flat or tubular regions, even for
vertices far from the medial sphere. Adding a point-sphere distance
term allows to define more compact regions with clean borders.
This is illustrated in Figure 3 with a shape composed essentially of
flat and cylinder parts. During the optimization process, with the
progressive addition of medial spheres, the SQEM error tends to
decrease rapidly, giving more importance to the Euclidean term,
which leads to more compact and isotropic clusters.

|𝑀 | = 16
𝜆 = 0 𝜆 = 0.02 𝜆 = 0.2 𝜆 = 1

Fig. 3. The effect of 𝜆 in partitioning: For a same set of spheres (left),
small values of 𝜆 results in clusters with noisy boundaries, leading to poor
adjacency quality for the connectivity, while higher values of 𝜆 lead to
more compact and regular clusters which in turn yield more meaningful
connectivity.

3.3 Spheres updating
The next step involves adjusting each medial sphere 𝑚𝑖 ∈ M to
match the local geometry of its cluster C𝑖 . For each cluster C𝑖 , the
optimal sphere that most accurately reflects the local geometry is
identified by minimizing the total squared distances to all planes
defined at the vertices 𝑣 𝑗 within the cluster. Using the quadrics
associated to each vertex 𝑣 𝑗 , the distance metric is defined as:

𝐸SQEM (C𝑖 ) =
∑︁
𝑣𝑗 ∈C𝑖

𝑄𝑣𝑗 (𝑚𝑖 ) (9)
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However, minimizing this function is ill-posed in open cylindrical
or flat regions as an infinite number of spheres can achieve mini-
mal distances in such configurations. For example, any of the blue
spheres depicted in Figure 4 would equally fit the constraints carried
by the planes defined on the surface of the cluster.

Fig. 4. Within an open cylindrical cluster, an infinite number of spheres
(blue) would minimize the SQEM energy. Adding a small-weight Euclidean
term resolves this ambiguity without overstretching the spheres (yellow).

To address this issue, we reintroduce the Euclidean distance term
into our optimization equation. The following term computes the
sum of the Euclidean distances from the medial sphere𝑚𝑖 = (𝑞𝑖 , 𝑟𝑖 )
to each of the vertices of the cluster C𝑖 :

𝐸euclidean (C𝑖 ) =
∑︁
𝑣𝑗 ∈C𝑖

𝐷𝑣𝑗 (𝑚𝑖 ) (10)

The optimal sphere𝑚∗
𝑖
= (𝑞∗

𝑖
, 𝑟∗
𝑖
) for the cluster C𝑖 is then derived

by minimizing the combined objective function:

(𝑞∗𝑖 , 𝑟
∗
𝑖 ) = argmin

𝑞𝑖 ,𝑟𝑖

(
𝐸SQEM (C𝑖 ) + 𝜆𝐸euclidean (C𝑖 )

)
(11)

where the Euclidean distance term is weighted by 𝜆. This optimiza-
tion problem is inherently non-linear, and the optimal sphere can be
efficiently computed using Gauss-Newton method, with the current
sphere configuration serving as the initial guess.
At the beginning of the optimization process, the number of

medial spheres is small and most clusters are well-defined w.r.t. the
SQEM energy minimization. At this stage, this term is crucial and
naturally drives the spheres towards the main features of the shape
like extremities of cylindrical regions or corners of flat areas. Once
these critical features are adequately captured, new spheres are
more likely to be added in the middle of flat or tubular regions. The
Euclidean term then plays a more significant role, promoting an
even distribution of spheres within the intermediate spaces. Figure
5 illustrates the impact of the parameter 𝜆 during the optimization
process on a simple example. When 𝜆 = 0 (only the SQEM term
is used), the two spheres perfectly fit the extremities of the shape,
but any additional sphere conflicts with either one of them. The
introduction of the Euclidean term slightly pushes the spheres off the
extremities and beyond the surface of the shape but allows additional
spheres to be distributed evenly. Large values of 𝜆 tends to favor
the uniform distribution of spheres at the expense of the fidelity
to the features of the shape. As will be exposed in the results, we
consistently use a value of 𝜆 = 0.2 which yields a good compromise.

Error computation. After an update step, the error of each cluster
C𝑖 is computed by summing the errors of each vertex 𝑣𝑖 ∈ C𝑖 w.r.t.
the medial sphere of the cluster𝑚𝑖 following Equation 8, normalized

𝜆
=
1

𝜆
=
0.
2

𝜆
=
0

Fig. 5. The effect of 𝜆 in updating: Pure SQEM (𝜆 = 0) effectively fits
spheres within the features of the shape. However, additional spheres con-
flict with the existing ones. Introducing a Euclidean term addresses this
instability, evenly distributing the space between samples, but as 𝜆 increases,
spheres tend to stretch and extend beyond the surface boundary.

by the total area of the cluster A(C𝑖 ):

𝐸 (C𝑖 ) =
1

A(C𝑖 )
∑︁
𝑣𝑗 ∈C𝑖

𝐸𝑣𝑗 (𝑚𝑖 ) (12)

Each optimization step (partitioning and updating) decreases the to-
tal error over all clusters. The process terminates when the reduction
in error is less than a predefined small threshold 𝜖 .

Sphere projection. As already illustrated in Fig 5, the minimization
of this energy function does not provide any guarantee that the
obtained spheres remain within the boundaries of the shape. To
address a similar issue, where the optimization results are not well
restricted within the desired domain, remeshing [Yan et al. 2009] or
reconstruction [Zhao et al. 2023] variational approaches project the
updated seeds or generators within the object space between the
iterations.

We devise such a correction step that projects back a sphere onto
the medial axis (see inset). Given a sphere 𝑠 = (𝑞∗, 𝑟∗), we first iden-
tify the point 𝑝 on the shape that is closest to the sphere center 𝑞∗.
A bounding volume hierarchy for surface inputs
or a KD-tree for point cloud inputs is used to
speed-up the process. Next, we calculate the di-
rection vector 𝑑 =

𝑞∗−𝑝
∥𝑞∗−𝑝 ∥ which aligns with the

gradient of the distance function. Finally, we ap-
ply the shrinking ball algorithm [Ma et al. 2012]
from point 𝑝 in the direction 𝑑 which computes
the corrected medial sphere𝑚 = (𝑞, 𝑟 ).

While the correction step temporarily interrupts the convergence
of the optimization process locally, it does not compromise the
overall convergence of the algorithm, as demonstrated in Fig. 11.
Applying the correction step after each optimization iteration re-
sults in a similar final error as deferring the correction until the
algorithm’s completion.
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3.4 Spheres splitting
In order to improve the quality of the medial axis approximation,
new samples can be added via spheres splitting. Clusters are sorted
by their error and considered in turn in descending order. A cluster
is considered for splitting if its error is above a given threshold and if
its adjacent clusters have not been considered for splitting (efficient
construction of the adjacency between clusters is addressed in the
next section 3.5). For each cluster selected for splitting, we identify
the vertex that carries the highest error. These vertices are used as
seeds to add new medial spheres into M. Initial configuration of
these new spheres is obtained using the shrinking ball algorithm
[Ma et al. 2012].

When the optimization has converged and no cluster has an error
greater than a given threshold or a prescribed maximal number of
spheres is met, the global optimization process is stopped. Along
with 𝜆, this error threshold or maximal number of spheres is the
second parameter that allows to control the result, a lower threshold
leading to finer and more accurate skeletons.

3.5 Connectivity building
After convergence of the optimization of the set of medial spheres
M, the skeletal structure is built by establishing a connectivity be-
tween the sphere centers. Several strategies have been proposed
in the literature. Dou et al. [Dou et al. 2022] suggested to embed
the selected spheres into a medial axis represented by a Voronoi
diagram and simplify it using the Q-MAT algorithm [Li et al. 2015].
While being effective in maintaining topological consistency and
minimal reconstruction error, this method is computationally inten-
sive (c.f. Table 2). Other methods such as MATFP [Wang et al. 2022],
which is inspired by the power shape [Amenta et al. 2001], builds
the connectivity by computing the restricted regular triangulation,
which is the dual of restricted power diagram of the set of spheres.

Aiming at efficiency and simplicity, we propose a method sim-
ilar to that of MATFP [Wang et al. 2022] that enables fast con-
nectivity construction. We observe that as the number of clusters
increases, the SQEM error decreases and the Euclidean distance
term becomes predominant. Consequently, the emerging clusters
are closely aligned with the power diagram of the medial spheres
restricted to the set of vertices of the input shape. This motivates us
to construct the connectivity of the medial spheres by computing
the dual of their associated clusters connectivity. More specifically,
an edge is inserted between two sphere centers if their respective
clusters are adjacent, and a face is formed between three sphere
centers if their clusters are mutually adjacent. Adjacency between
clusters can be easily obtained in meshes or point clouds by going
through the edges of the mesh or the KNN-graph.

4 Results
Our algorithm has been implemented in C++ with the CGoGN
library for meshes [Kraemer et al. 2020] and the Eigen library for
linear algebra operations [Guennebaud et al. 2010]. All tests were
performed on a computer equipped with an Intel(R) Core(TM) i7-
12700k CPU at 3.60 GHz and 32 GB of RAM. We normalized the size
of all models to a [0,1] range.

We conducted comparisons primarily against Coverage Axis (CA)
[Dou et al. 2022], Coverage Axis++ (CA+) [Wang et al. 2024a], and
Q-MAT [Li et al. 2015], as these methods are also able to generate
skeletons with a specific number of spheres. For fairness, we used
CA to determine the number of spheres for each model, and results
of both three methods are post-processed with a correction step
using the shrinking ball algorithm. Following [Dou et al. 2022; Wang
et al. 2024a], we set the dilation constant 𝛿𝑟 to 0.2, sampled 1500
vertices uniformly from the model surface, and generated 20000
random vertices within the model. The Set Cover problem is then
solved using the HIGHS library [Huangfu and Hall 2018], and the
number of selected vertices determines the target number of spheres.
To establish the connectivity for CA and CA+, we embedded the
selected spheres in Q-MAT and simplified it until only the selected
spheres remained. This process was achieved using a program pro-
vided by the authors. For our method, we consistently set 𝜆 = 0.2
throughout the experiments.

Reconstruction Fidelity. One of the most important properties of
the medial axis is its ability to accurately reconstruct the original
object. The reconstructed shape is obtained by interpolating the
medial spheres along the edges and faces of the medial mesh [Li et al.
2015; Sun et al. 2015]. We evaluated the reconstruction quality using
the two-sided Hausdorff Distance (HD), denoted as 𝜖 . Results are
shown in Table 1. We can observe that, although Q-MAT is designed
for highly accurate shape approximations, our results are superior
in most cases. This discrepancy arises because Q-MAT, as a pro-
gressive simplification method, accumulates errors during extreme
simplifications, since it considers only local information at each step.
Conversely, our approach integrates global information during the
partitioning process, thereby minimizing error accumulation and
resulting in more precise outcomes.

Time Efficiency. Table 2 presents quantitative data on the effi-
ciency of our method. We tracked execution time across various
stages, including initial medial axis computation (CA, CA+, Q-MAT),

Table 1. Reconstruction error comparison with Coverage Axis, Coverage
Axis++ and Q-MAT. |𝑀 | : The number of skeleton points, 𝜖 : Two-sided Haus-
dorff distance

Method Coverage Axis Coverage Axis++ Q-MAT Ours

Model( |𝑉 |) |𝑀 | 𝜖 𝜖 𝜖 𝜖

Armadillo (36725) 83 3.438% 3.905% 3.860% 2.735%
Fertility (17827) 98 2.364% 3.386% 3.984% 1.630%
Chair (10500) 117 1.892% 2.412% 1.606% 1.123%
Vase (14859) 117 2.467% 2.599% 2.847% 1.890%

Elephant(24955) 117 2.074% 2.733% 2.514% 1.741%
Bug(8640) 75 2.338% 2.429% 2.117% 1.001%

Seahorse(20494) 76 3.195% 3.393% 5.088% 2.967%
Dove(5519) 76 2.754% 2.885% 2.186% 0.952%

Vessel (49698) 99 3.054% 3.033% 0.818% 1.716%
Pinion (10369) 230 3.393% 3.319% 2.194% 2.127%
Elk (24013) 124 2.478% 2.258% 1.697% 0.944%

Neptune (14814) 106 4.063% 3.199% 3.329% 2.374%
Dolphin (15100) 51 2.043% 2.446% 1.983% 1.296%
Santa (10241) 90 2.011% 2.372% 2.158% 1.475%
Bear (10141) 45 3.285% 3.391% 2.204% 1.659%
Plane (7651) 86 2.151% 2.945% 1.643% 1.106%
Spider (11051) 107 1.692% 1.604% 0.901% 0.495%
Venus (10760) 43 2.162% 2.701% 3.768% 2.929%
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Table 2. Time efficiency comparison with Coverage Axis, Coverage Axis++ and Q-MAT. Times are measured in seconds.

Method Coverage Axis Coverage Axis++ Q-MAT Ours

Model(|𝑉 |) |𝑀 | MA init Selection Connectivity Total time Selection Connectivity Total time Simplification Total time Time

Armadillo (36725) 83 4.528 3.6 10.476 18.604 0.93 10.753 16.211 10.323 14.851 2.179
Fertility (17827) 98 1.811 24.29 5.012 31.113 1.106 4.855 7.772 4.632 6.443 1.46
Chair (10500) 117 1.091 509.4 2.481 512.972 1.31 2.347 4.748 2.091 3.182 0.971
Vase (14859) 117 1.512 1.3 4.095 6.907 1.3 4.157 6.969 4.256 5.768 0.9

Elephant (24955) 117 2.703 3.84 6.933 13.476 1.3 7.359 11.362 6.554 9.257 2.226
Bug (8640) 75 0.91 5.1 1.96 7.97 0.9 1.991 3.801 1.848 2.758 0.429

Seahorse (20494) 76 2.019 18.85 5.494 26.363 0.9 5.511 8.43 5.074 7.093 1.035
Dove (5519) 76 0.53 >1000 1.017 >1000 0.88 1.186 2.596 1.029 1.559 0.42
Vessel (49698) 99 5.337 1.2 11.849 18.386 1.127 12.587 19.051 11.185 16.522 2.495
Pinion (10369) 230 1.02 2.3 2.295 5.615 2.79 2.289 6.099 2.439 3.459 2.584
Elk (24013) 124 2.538 2.62 6.108 11.266 3.485 6.228 12.251 5.746 8.284 1.94

Neptune (14814) 106 1.148 5.6 3.478 10.226 1.196 3.562 5.9063 3.221 4.369 1.017
Dolphin (15100) 51 1.761 4.47 4.568 10.799 0.7 4.564 7.025 4.31 6.071 0.751
Santa (10241) 90 1.07 3.89 2.628 7.588 1.04 2.768 4.878 2.529 3.599 0.598
Bear (10141) 45 1.1 2.31 2.76 6.17 0.61 2.803 4.513 2.68 3.78 0.34
Plane (7651) 86 0.751 262.1 1.999 264.85 0.973 2.039 3.763 1.51 2.262 0.529
Spider (11051) 107 1.176 1.34 2.733 5.249 1.158 2.664 4.998 2.536 3.712 0.843
Venus (10760) 43 1.11 3.02 3.023 7.154 0.597 2.973 4.681 2.659 3.77 0.343

selection of the medial samples (CA, CA+), simplification (Q-MAT),
and connectivity construction (CA, CA+). Since our method con-
structs connectivity at each iteration (to prevent adjacent spheres
splitting), we do not provide detailed timing for each stage of the
algorithm. Owing to the local nature of our sphere updating process,
which is highly amenable to parallelization, our method generally
outperforms other approaches by an order of magnitude in terms
of efficiency.

Visual comparison. Figure 9 shows the results obtained with these
different methods for different shapes. For each model, we show
the obtained medial axis approximation, the reconstructed shape
and a color-coded representation of the reconstruction error. Figure
10 shows the medial axis approximation obtained for a shape at
several resolution levels. As observed, both CA and CA+ struggles
to generate a regular distribution of spheres and fails to preserve
geometric features with randomly generated candidates. Similarly,
Q-MAT, focused on local metric changes, does not maintain overall
distribution or features effectively. In contrast, our method achieves
a more uniform sphere distribution while better preserving the
shape’s key geometric features.

Robustness to noise. We assessed the robustness of our method
by adding noise to the input shape vertices position with different
magnitudes. Figure 6 shows how our method is still able to produce
good results up to a high level of noise (expressed in % of the bound-
ing box diagonal). Note that starting from 3% of noise, the correction
step was not applied anymore, as the surface itself becomes fuzzy
and the projection process prevents the optimization from being
stable.

Study of the metric. Figure 8 shows the role of the different terms
of the metric on a simple example shape. Using only the Euclidean
term, optimized spheres are not constrained in the shape. The pro-
jection step helps to put them back in the shape but the geometric
features are not well captured. Using only the SQEM term, the un-
derlying clusters get too extended which leads to spheres that reach

0.5% 1% 2%

3% 4%

Fig. 6. Robustness to noise: Our method still produces good results even
with a fairly high level of noise in the input data.

beyond the shape and irrelevant connectivity. The proposed com-
bined metric leads to more compact clusters, better fitted spheres
and proper connectivity. The projection step merely corrects the
optimized spheres to ensure they are actual medial axis samples.
Figure 7 shows the effect of the 𝜆 coefficient, which controls the
influence of the Euclidean term, for a more complex shape than
shown in Sec. 3. A small value leads to a perfect fit of the medial
samples in the features of the shape, but as the number of samples
increases, they tend to conflict in these areas of the shape. A high
value promotes regularly distributed samples which leads to a poor
capture of the shape features at coarse scales. An intermediate value
yields a good compromise between those behaviors.

Interactive modification of skeleton. An appealing aspect of our
method is the ability to interactively edit the skeleton. The user can
remove or split the hovered medial sample – even without having
the spheres to be actually displayed, while the optimization loop
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|𝑀 | = 90

|𝑀 | = 50

|𝑀 | = 16

𝜆 = 0.02 𝜆 = 0.2 𝜆 = 1

Fig. 7. Effect of the 𝜆 parameter.Medial spheres and skeleton obtained for a plane model with different values of 𝜆 and different number of medial samples.

continues to update the medial mesh in the background. Figure 12
shows an interactively adapted skeleton that features both high
and low samples densities. This possibility is also illustrated in the
accompanying video.

5 Limitations and future work
Stability. Similar to other variational partition algorithms, our

method lacks a theoretical proof of global convergence and optimal-
ity. In some configurations, medial spheres may oscillate between
two positions due to the discrete clustering based on vertices. This
issue is more likely to happen if the user aims at a dense medial
axis approximation in which some clusters may become too small
to yield a stable solution. Upsampling of the object can solve this
problem in most cases. However, in the surface setting, an alterna-
tive solution could involve clustering based on continuous surfaces
rather than solely depending on the vertices. While this approach
might increase computational costs, efficient algorithms capable of
handling such tasks have already been developed [Yan et al. 2009].

Topology preservation and connectivity. The medial axis should
consist of curves and surfaces and be homotopic to the input shape.
At a very coarse resolution, the topological genus of our results
can be different to that of the shape. This can be of interest to yield
segmentations at different scales. However, we should also provide
a refinement rule to guarantee the alignment of the topology of the
medial mesh with that of the input shape. In addition, our strategy
for connectivity construction that relies solely on cluster adjacency
is fast but can also lead to overlapping triangles or extra cavities
in the medial mesh. Ultimately, as already discussed in [Wang et al.
2022], even with a fine medial axis approximation and surface clus-
ters that exactly correspond to the restricted power diagram of the
medial spheres, this problem cannot be solved properly without the
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Fig. 8. Ablation study of themetric. Medial spheres and skeleton obtained
for 6 samples on a synthetic object in front and side view under different
configurations of optimization: with or w/o Euclidean term, with or w/o
SQEM term, with or w/o sphere projection.

computation of a volumetric restricted power diagram. This has
been done in [Wang et al. 2024b] that checks the equivalence of
the connected components and Euler characteristics of the medial
cells and their dual volumetric restricted elements. Pathological
configurations can be detected and guide the insertion of new sam-
ples. However, the cost induced by such a scenario would hinder
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our goal of providing a controllable and fast solution that supports
interactive manipulation of the output. If necessary, though, such a
procedure could be considered as post-processing.

Further improvements and applications. Several features could im-
prove the control over the result in an interactive modeling session.
Medial sample freezing could lock a sample at a given location and
prevent the optimization process to further move it. A space vary-
ing density function could be designed to guide the refinement to
different resolutions in different areas of the object. We also plan to
study the use of our method with different kinds of input data such
as binary discrete images or incomplete data.
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𝜖 = 2.467% 𝜖 = 2.599% 𝜖 = 2.847% 𝜖 = 1.890%
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Fig. 9. Comparison of the results obtained with Coverage Axis, Coverage Axis++, Q-MAT and our method on different shapes (plane, fertility, elk, vase and
elephant). Number of medial spheres |𝑀 | and reconstruction error 𝜖 are displayed for each model and method.
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Fig. 11. Error convergence (on a logarithmic scale) is compared for two
strategies: sphere corrections applied continuously during the optimization
process (red), or only at the end (blue). The steep steps in the decrease are
due to the insertion of new medial spheres. When no correction is applied
during the optimization process, we activate the correction step at the end
to ensure the resulting spheres align with the medial axis, which slightly
increases the error. Nevertheless, the final error levels are comparable to
those observed when corrections are applied continuously.

Fig. 12. Interactive edition via medial spheres addition and deletion allows
to generate skeletons with fine and coarse parts according to the user needs.

Coverage Axis++ Q-MAT Ours
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𝜖 = 10.40% 𝜖 = 3.624% 𝜖 = 3.319%

Fig. 10. Comparison of the results obtained with Coverage Axis++, Q-MAT
and our method at different resolutions (30, 60 and 120 medial spheres)
on three different shapes (bug, dolphin, dove). 𝜖 represents the two-sided
Hausdorff distance.
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